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1 Introduction

One of the most striking features of the van der
Waals interaction is its non-additivity[1]. It states
that the force suffered by a body, A, due to two
other bodies, B and C, is not the superposition of
the forces A would felt in the presence of B and C
alone. Although this is well-know for many years,
quantitative predictions of the non-additivity effects
have been performed only in few cases. Recently,
C. Eberlein and R. Zietal proposed a method ca-
pable of evaluate the dispersive force of an atom
close to a perfectly conducting surface of an arbi-
trary shape[2]-[4]. In this work we will generalize
their method to two atoms and obtain a analytical
expression allowing us to analyse quantitatively the
effect an arbitrary perfectly conducting surface has
on the interaction between two atoms.
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2 The Eberlein-Zietal method

Consider a pollarizable atom without permanent
dipole moment in the presence of a perfectly con-
ducting grounded surface S. The vacuum zero-point
fluctuations will induce a oscillating dipole in the
atom that will interact with the surface. The exact
calculation of such a force belongs to the quantum
electrodynamics framework. However, if the atom is
close enough to the surface (compared to its relevant
wavelength transitions) we don’t need to quantize
the electromagnetic field, once it is, within an excel-
lent approximation, instantaneous. The interaction
between the atom and the surface is, in this regime,
mediated by a classical field. Eberlein and Zietal has
shown [2] that this force may be evaluated from the
Hamiltonian of interaction

Hint =
1

2ε0
(d ·∇′)(d ·∇)GH(r, r′)
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where d is the atomic dipole operator and GH is a
function that satisfies

∇2GH(r, r′) = 0


 1

4π|r − r′| + GH(r, r′)





r∈S

= 0 . (2)

This is analogous to the equations satisfied by the
potential generated by the images in the electrostatic
problem of a charge in the presence of the surface S.
This renders a simple and powerful way to solve our
problem whenever the image method is applicable.
An infinite plane, a sphere and a disc are some nice
examples[5]-[6].

3 Generalization for two atoms

In this situation, the interaction Hamiltonian (1)
becomes

Hint = HA + HB + Hlondon + HABS , (3)

where

Hi =
1
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(di ·∇′)(di ·∇)GH(r, r′)
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Hlondon =
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HABS =
1
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(dB ·∇′)(dA ·∇)GH(r, r′)
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In the above expression, Hi is the only term that
would survive if we have only the atom i interacting
with the surface S. Hlondon is the interaction be-
tween the atoms in the absence of any surface. In
the next section we will show that it corresponds
to the London energy of interaction, as expected in
the non-retarded regime. Finally, HABS is the only
term involving the three terms and accounts for the
non-additivity in their interaction. This is the cen-
tral term to our analysis and will be left to section
5. The great advantage of our procedure is now evi-
dent - it separates the non-additivity term from the
others.

4 London’s interaction energy

The term Hlondon is the only that survives in the
absence of surface (GH = 0). From now on we
will, for the sake of simplicity, assume the atoms
to have spherical symmetry. Employing the pertur-
bation theory in second order, we obtain

Elondon = −
∑

r,s

′ 〈0 , 0|Hlondon|r, s〉〈r, s|Hlondon|0 , 0〉
EA

0r + EB
0s

= − 1
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0s)
. (5)

This way we re-obtain the well-known result for the
interaction between two atoms in the vacuum in the
non-retarded regime.

5 Non-additivity

We will, now, focus on the term HABS in equation
(4). As we have discussed, this terms contemplates
quantitatively the non-additivity effects of our sys-
tem. Working this term through perturbation the-
ory we obtain a vanishing first order contribution.
In second order, the non-vanishing terms involving
HABS are

−2
∑

r,s

′ 〈0 , 0|Hlondon|r, s〉〈r, s|HABS|0 , 0〉
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0r + EB
0s

(6)

and

−
∑

r,s

′ 〈0 , 0|HABS|r, s〉〈r, s|HABS|0 , 0〉
EA

0r + EB
0s

. (7)

After some calculation, we obtain
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This way we have a quantitative measure of the
effect presented by the surface S on the interaction
between the two atoms. It is remarkable that this
ratio is independent on the internal structure of the
atoms (remember that we are supposing them spher-
ically symmetrical). With this expression we may
analyse the non-additivity effects for any grounded
surface. We could also analyse the influence of one
atom on the interaction between the surface with the
other atom. However, since the atom-surface inter-
action has, in general, a first order contribution, the
ratio between the non-additivity term and the free
atom-surface interaction will be much smaller than
(8).

6 Conclusion

In this poster we have shown how to evaluate
analytically the non-additivity effects for a system
composed by two atoms and a perfectly conducting
grounded surface. Non-additivity effects to this type
of system have already been treated, [7]-[8], however,
as long as the authors know, only for some partic-
ular geometry. Our treatment has the advantage of
be applicable to an arbitrary surface.

As a perspective, we shall now deal with a par-
ticular example of great interest, namely, two atoms
in the presence of a sphere.
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