Electromagnetic boundary conditions for infinitesimally thin semitransparent o-function plates
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Abstract

We derive the electromagnetic boundary conditions for infinitesimally thin semitransparent d-function plates. We show that the optical properties of such a plate are independent of the material properties in the direction normal to the surface. We obtain conditions for the physical realization of such an infinitisimally thin semitransparent o-function plate. The thin-plate limit of a plasma
slab of thickness d with plasma frequency wg = (,/d reduces to a d-function plate for frequencies (w = i() satisfying (d < 1/(,d < 1. We obtain Casimir interaction energy between two delta-finction plates and Casimir Polder energy between an atom and a delta-function plate. In perfect conductor limit these energies give the usual Casimir-Polder energy. The “thick” and “thin”

boundary conditions considered by Bordag are found to be identical in the sense that they lead to the same electromagnetic fields.

What i1s it about?

e Electromagnetic boundary conditions on a semitransparent o-function material.
e What happens to the optical properties of a dielectric slab in zero thickness limit?
e What is the physical realization of a zero thickness material’?

e Casimir and Casimir-Polder interaction energy between o-function materials.

Why are we interested?

e The Casimir interaction energy between two separate bodies using multiple scattering formalism is
1 [dC —1
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[t is easier to do analytical calculations if the potentials are described by o-function.
e Can we describe 2D surfaces like graphene using it”

e Bordag in 2004 showed that Casimir-Polder energy between a d-function plate and an atom is 13%
lower than standard result.

e Farlier work of non-contact gears (PRD 78, 065018, 065019) on scalar field interacting with semitrans-
parent o-function potential.
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Non-contact gears I: Corrugated semi-transparent o- ,
, Non-contact gears II: Corrugated semi-transparent o-
function plates. , ,
functions cylinders.
e However, to extend it to the electromagnetic case, we need to answer “what is the physical realization

of an infinitesimally thin material?”

Semitransparent o-function plates

e [lectric and magnetic properties:

e(z) — 1=X0(2),
pr(z) —1=A40(2).

e Assume that the electric permittivity and
the magnetic permeability is isotropic in the
plane of the plate only: e = diag(e™, e*, 8”)

and g1 = diag(pt, gk, pll).

A semitransparent d-function plate sandwiched between

two semi-infinite slabs.

Fields and Green’s functions

e The fields in terms of Green’s dyadics are:
E(z) = [d'~v(z,7)-P(Z)  and

e The reduced electric Green’s dyadics is

H(z) = [d2 ¢(z,7) - P(Z).

e The reduced magnetic Green’s dyadics is
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e Magnetic Green’s function g% (z, 2’) obeys e Electric Green’s function g%(z, 2’) obeys
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Boundary conditions on scalar Green’s functions

e TM mode e T'IL mode
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Reflection and transmission coefficients
e The transmission coeflicients
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e The reflection coefhicients
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e The electric coeflicients are obtained by replacing € <> pu and H — FE.

Green’s functions for a semitransparent o-function plate

e The magnetic Green’s function is
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where we have set 5,} = 5” = 1 and ,uz-L = ,uy = 1. n(2) is the sign-function and x = \//<:2L + ¢
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e The reflection and the transmission coeflicients

A perfect electric and magnetic conductor will be
Ay transparent (t// = —1). A circular laser, of circum-
ference equal to its’ wavelength, would extinguish
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itself going through such a plate.

Physical realization of a semitransparent Jo-function plate

e Consider a slab of thickness d. Limit d — 0 gives the o-function response of dielectric permittivity:.
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e In thin-plate limit: ¢%d? < )\% < 1 and kid2 < )\% <& 1, the refection and transmission coefficient

for a slab reproduces the respgctive coefficients for the d-function plate.
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Plasma sheet
G

2
e Plasma model realization requires identifying )\eL = where ¢ = fnn;ft > wgd.

e This suggests that number density n s is inversely proportional to the thickness of the material for a
very thin plasma sheet.

e We model charge carriers as a non-relativistic Fermi gas confined in a thin material slab of thickness
d with no flux accross the walls.

3
e Number density in terms of Fermi wave-vector k% is given by ny = %V(x), where A is the area of
the slab and the thickness dependence is given by function v(x)

3 1 3 1 1 N kpd
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1.4 4 The oscillations in v(x) resembles the
124 de Hass—van Alphen effect resulting
ol due to the quantization effect due to
| presence of the magnetic field.
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Plot of v(x) in Eq. (3) versus N = kpd/m. The value of

v(1) and of N — oo limit are also shown.

Casimir energy for o-function plates

e T'wo-body contribution to energy: Fiot = Eg+ E1 + Eo + Eq9.
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where TZE and r{[ are reflection coefficients of individual objects.
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Casimir-Polder energy

e Atom and a o-function plate:
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e Casimir-Polder energy between atom and a perfect conductor is Ey = —8§T0‘a4.

e We do not see difference in the “thin” boundary condition described by Bordag. The “thick” and “thin”
propagators described in his paper corresponds to the same Green’s dyadic and therefore corresponds
to same physical situation.
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