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Abstract
We derive the electromagnetic boundary conditions for infinitesimally thin semitransparent δ-function plates. We show that the optical properties of such a plate are independent of the material properties in the direction normal to the surface. We obtain conditions for the physical realization of such an infinitisimally thin semitransparent δ-function plate. The thin-plate limit of a plasma
slab of thickness d with plasma frequency ω2

p = ζp/d reduces to a δ-function plate for frequencies (ω = iζ) satisfying ζd ≪
√

ζpd ≪ 1. We obtain Casimir interaction energy between two delta-finction plates and Casimir Polder energy between an atom and a delta-function plate. In perfect conductor limit these energies give the usual Casimir-Polder energy. The “thick” and “thin”
boundary conditions considered by Bordag are found to be identical in the sense that they lead to the same electromagnetic fields.

What is it about?

• Electromagnetic boundary conditions on a semitransparent δ-function material.

•What happens to the optical properties of a dielectric slab in zero thickness limit?

•What is the physical realization of a zero thickness material?

• Casimir and Casimir-Polder interaction energy between δ-function materials.

Why are we interested?

• The Casimir interaction energy between two separate bodies using multiple scattering formalism is

E12 =
1

2

∫

dζ

2π
Tr ln

[

1− Γ0T1Γ0T2
]

, where Ti = Vi
[

1− Γ0Vi
]−1

.

It is easier to do analytical calculations if the potentials are described by δ-function.

• Can we describe 2D surfaces like graphene using it?

• Bordag in 2004 showed that Casimir-Polder energy between a δ-function plate and an atom is 13%
lower than standard result.

• Earlier work of non-contact gears (PRD 78, 065018, 065019) on scalar field interacting with semitrans-
parent δ-function potential.
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Non-contact gears II: Corrugated semi-transparent δ-

functions cylinders.

•However, to extend it to the electromagnetic case, we need to answer “what is the physical realization
of an infinitesimally thin material?”

Semitransparent δ-function plates

• Electric and magnetic properties:

ε(z)− 1=λeδ(z),

µ(z)− 1=λgδ(z).

•Assume that the electric permittivity and
the magnetic permeability is isotropic in the
plane of the plate only: ε = diag(ε⊥, ε⊥, ε||)

and µ = diag(µ⊥, µ⊥, µ||).
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ε(z) = 1+ λeδ(z)
µ(z) = 1+ λgδ(z)

A semitransparent δ-function plate sandwiched between

two semi-infinite slabs.

Fields and Green’s functions

• The fields in terms of Green’s dyadics are:
E(z) =

∫

dz′ γ(z, z′) ·P(z′) and H(z) =
∫

dz′φ(z, z′) ·P(z′).

• The reduced electric Green’s dyadics is
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• The reduced magnetic Green’s dyadics is

φ(z, z′) = iω
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•Magnetic Green’s function gH(z, z′) obeys
[
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]

gH(z, z′) = δ(z−z′)

• Electric Green’s function gE(z, z′) obeys
[
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gE(z, z′) = δ(z−z′)

Boundary conditions on scalar Green’s functions

• TM mode

gH(z, z′)
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• TE mode
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Reflection and transmission coefficients
• The reflection coefficients
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• The transmission coefficients
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• The electric coefficients are obtained by replacing ε ↔ µ and H → E.

Green’s functions for a semitransparent δ-function plate

• The magnetic Green’s function is

gH(z, z′) =
1

2κ
e−κ|z−z′| +

[

rHg + η(z − a)η(z′ − a) rHe
] 1

2κ
e−κ|z−a|e−κ|z′−a|,

where we have set ε⊥i = ε
||
i = 1 and µ⊥i = µ

||
i = 1. η(z) is the sign-function and κ =

√

k2⊥ + ζ2.

• The reflection and the transmission coefficients
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g
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ζ2

A perfect electric and magnetic conductor will be
transparent (tH = −1). A circular laser, of circum-
ference equal to its’ wavelength, would extinguish
itself going through such a plate.

Physical realization of a semitransparent δ-function plate

• Consider a slab of thickness d. Limit d → 0 gives the δ-function response of dielectric permittivity.

ε⊥(iζ)− 1 = λ⊥e (iζ) lim
d→0

[θ(z + d)− θ(z)]

d
,

• In thin-plate limit: ζ2d2 ≪ d
λ⊥
e
≪ 1 and k2⊥d

2 ≪ d
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e
≪ 1, the refection and transmission coefficient

for a slab reproduces the respective coefficients for the δ-function plate.
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Plasma sheet

• Plasma model realization requires identifying λ⊥e =
ζp
ζ2
, where ζp =

e2
m
ntot

A → ω2pd.

• This suggests that number density nf is inversely proportional to the thickness of the material for a
very thin plasma sheet.

•We model charge carriers as a non-relativistic Fermi gas confined in a thin material slab of thickness
d with no flux accross the walls.

•Number density in terms of Fermi wave-vector k2F is given by nf =
k3F
3π2ν(x), where A is the area of

the slab and the thickness dependence is given by function ν(x)
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Plot of ν(x) in Eq. (3) versus N = kFd/π. The value of

ν(1) and of N → ∞ limit are also shown.

The oscillations in ν(x) resembles the
de Hass–van Alphen effect resulting
due to the quantization effect due to
presence of the magnetic field.

Casimir energy for δ-function plates

• Two-body contribution to energy:Etot = E0 + E1 + E2 + E12.
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where rEi and rHi are reflection coefficients of individual objects.
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• Thin-plate limit: d
a ≪ ζpa ≪ 1
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.
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Casimir-Polder energy

•Atom and a δ-function plate:

ECP
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• Casimir-Polder energy between atom and a perfect conductor is E0 = − 3α
8πa4

.

•We do not see difference in the “thin” boundary condition described by Bordag. The “thick” and “thin”
propagators described in his paper corresponds to the same Green’s dyadic and therefore corresponds
to same physical situation.
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