1. (15) Let A and B be two $n \times n$ matrices over \mathbb{R} which are similar over \mathbb{C}. Prove or disprove that A is similar to B over \mathbb{R}.
2. (15) Let A be an $n \times n$ matrix with entries in \mathbb{C} such that for each eigenvalue c of A, the eigensubspace of A associated with c is one dimensional. Let B be any $n \times n$ matrix satisfying $AB = BA$. Show that there is a polynomial $f \in \mathbb{C}[x]$ such that $B = f(A)$.
3. (15) Let V be a finite dimensional vector space over the field F and T be a linear transformation on V. For any vector $\alpha \in V$, let $Z(\alpha; T) = \{ f(T)\alpha \mid f \in F[x]\}$. Suppose that V has two cyclic decompositions:

- $V = Z(\beta_1; T) \oplus Z(\beta_2; T)$, with the T-annihilator of β_i being q_i and satisfying q_1 divides q_2;
- $V = Z(\alpha_1; T) \oplus \cdots \oplus Z(\alpha_r; T)$, with the T-annihilator of α_i being p_i satisfying p_i divides p_{i+1} for $i = 1, 2, \ldots, r - 1$.

Show that $r = 2$, $p_1 = q_1$ and $p_2 = q_2$.

4. (30) Let \(A = \begin{pmatrix} -1 & -1 & 0 & 0 \\ 4 & 3 & 0 & 0 \\ 35 & 21 & 1 & 0 \\ -15 & -9 & 0 & 1 \end{pmatrix} \).

a) Find the invariant factors, minimal polynomial and the characteristic polynomial of \(A \).

b) Find the Jordan canonical form \(J \) of \(A \) and an invertible matrix \(P \) such that \(P^{-1}AP = J \).
5. (15) Let T be a linear operator on the n-dimensional inner product space V over \mathbb{C} satisfying the property that $TT^* = f(T)$, where f is any polynomial in $\mathbb{C}[x]$ such that $f(0) = 0$. Show that T is normal. (Recall that the adjoint operator T^* is defined by the equality $(T\alpha|\beta) = (\alpha|T^*\beta)$ for all vectors α and β in V and T is normal if $TT^* = T^*T$.)