Problem 1. Let G be a cyclic group of order 2008 with generator a. Find all $b \in G$ such that $G/\langle b \rangle$ is isomorphic to $\langle a^{100} \rangle$. (Here $\langle c \rangle$ denotes the subgroup of G generated by $c \in G$.)

Problem 2. Let G be a group of order $2^2 \cdot 3 \cdot 11$. Show that G is not simple.

Problem 3. Let $G = SL(2, \mathbb{Z})$ be the group of 2×2 matrices with integer entries and determinant 1. Let $H \subset \mathbb{C}$ be the upper half plane of complex numbers, $H = \{ z \in \mathbb{C} \mid \text{Im } z > 0 \}$. Show that the formula
\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az + b}{cz + d}
\]
defines an action of G on H and show that all orbits are infinite.

Problem 4. Let R be a commutative ring with ideals I and J. Assume that IJ is a principal ideal. Show that both I and J are finitely generated.

Problem 5. Show that the ring $R = \{ a + b\sqrt{-2}, \ a, b \in \mathbb{Z} \}$ is an Euclidean domain with the norm function $N(a + b\sqrt{-2}) = a^2 + 2b^2$ and therefore a unique factorization domain. Write the prime decomposition of 6 in R.

Problem 6. Compute the Galois group of the polynomial $p(x) = x^4 - 14x^2 + 9$ over \mathbb{Q}. List all the subgroups of the Galois group and the corresponding intermediate fields.

Problem 7. Describe explicitly an injective homomorphism from the symmetric group S_3 to the group $GL(2, \mathbb{R})$ of 2×2 invertible matrices with real coefficients. (Hint: S_3 acts in \mathbb{R}^3 by permuting the coordinates of the vectors and the 2-dimensional plane $x + y + z = 0$ is invariant under this action.)

Problem 8. Let $G = \mathbb{Z} + \mathbb{Z}$ be a free abelian group of rank 2 with generators x and y. Let $H \subset G$ be the subgroup generated by two elements $2x + 2y$ and $x + 3y$. Describe the groups H and G/H.