1. Find a one-to-one conformal mapping from the upper half-plane without the segment $(0, i]$ onto the unit disk (the answer can be given as a series of maps).

2. (a) Determine the number of points z in the unit disk such that $e^z = 3z^4$.
 (b) Determine the number of points z in the complex plane such that $e^z = 3z^4$.

3. Use contour integration to compute the integral
 \[\int_{-\infty}^{\infty} \frac{dx}{x^2 + 2x + 2}. \]

4. Suppose $f(z)$ is an entire function such that $|f(z)| \leq A |z|$ for all z, where A is some fixed positive number. Show that $f(z) = az$, where a is a complex constant.

5. Compute the Laurent series representation of $\frac{e^z}{(z+1)^2}$ around $z = -1$ and show that it is valid for $0 < |z+1| < \infty$.

6. Let γ be the circle $|z| = 2$ described counterclockwise. Evaluate the integral
 \[\int_{\gamma} \frac{5z - 2}{z(z - 1)} \, dz \]
 (a) by finding the residues at the finite poles,
 (b) by finding the residue at ∞.

7. Compute
 \[\frac{1}{2\pi i} \int_{\gamma} \frac{z^3 + z}{z - z_0} \, dz, \]
 where z_0 stands for each of $-1, 0, 1, i$ and γ is the curve below

8. Let $P(z) = \sum_{k=0}^{n} a_k z^k$ be a polynomial of degree n. Prove that if $|a_0| < |a_n|$, then P has at least one zero inside the unit disk.