1. Let $H = [-1, 1] \times \{0\}$ and $V = \{0\} \times [-1, 0)$ in the plane and let $T = H \cup V$. Show T is not homeomorphic to the unit interval $I = [0, 1]$.

2. Let (X, d) be a metric space and let F be the family of all nonempty closed, bounded subsets of X. For $F, G \in F$, define $D(F, G) = \inf\{r | F \subset G_r \text{ and } G \subset F_r\}$, where $F_r = \bigcup_{x \in F} B(x, r)$ and $B(x, r)$ is the open ball of radius $r > 0$ centered at x. Show that D is a metric on F.

3. Prove that if X and Y are connected spaces then $X \times Y$ is connected.

4. Prove that every compact regular space is normal.

5. Describe the one-point compactification of a locally compact Hausdorff space and prove that it is compact.

6. A set X in \mathbb{R}^n is star convex if there is $x_0 \in X$ such that for every $x \in X$, the segment from x_0 to x lies in X. If X is star convex, prove that X is simply connected.

7. Let $p : E \longrightarrow B$ be a covering map. Prove that if E is compact, then $p^{-1}(b)$ is finite for every $b \in B$.